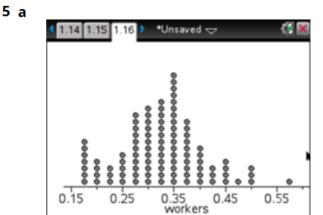

- 1 a There are eight dots which represent sample proportions of 0.8 or more from the 100 samples simulated. Thus we can estimate $\Pr(\hat{P} \ge 0.8) = 0.08$.
 - **b** There is one dot which represent a sample proportions of 0.5 or less from the 100 samples simulated. Thus we can estimate $\Pr(\hat{P} \le 0.5) = 0.01$.
- **2 a** There is one dot which represents a sample proportion of 0.7 or more from the 100 samples simulated. Thus we can estimate $\Pr(\hat{P} \ge 0.7) = 0.01$.
 - **b** There are seven dots which represent a sample proportion of 0.25 or less from the 100 samples simulated. Thus we can estimate $\Pr(\hat{P} \leq 0.25) = 0.07$.

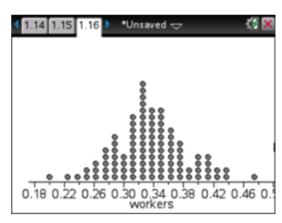
3 a



- **b** see **a**
- $^{f c}$ i $\Pr(\hat{P} \geq 0.64) pprox 0.04$. (Answers will differ)
 - ii $\Pr(\hat{P} \leq 0.44) pprox 0.03$. (Answers will differ)

4 a

- **b** see **a**
- ${f r}$ i ${
 m Pr}(\hat{P} \geq 0.9) pprox 0.06$.(Answers will differ)
 - ii $\Pr(\hat{P} \leq 0.7) pprox 0.08$. (Answers will differ)



b see **a**

i $\Pr(\hat{P} \geq 0.45) pprox 0.18$.(Answers will differ)

ii $\Pr(\hat{P} \leq 0.25) pprox 0.38$.(Answers will differ)

6 a

b see **a**

 $^{f c}$ i $\Pr(\hat{P} \geq 0.45) pprox 0.01$. (Answers will differ)

ii $\Pr(\hat{P} \leq 0.25) pprox 0.06$. (Answers will differ)